A Machine Learning Approach to Augment Security in NFC-Based
Access Control Systems

Daniella R. Gullotta, David Prego and Yibeltal F. Alem, University of Canberra
Abstract

Near-field communication (NFC) is widely used in access control systems such as payment
processing and regulating access to facilities. Due to its decentralised nature, NFC is
constrained by resource limitations, making it vulnerable to exploits such as key cloning. This
study investigated the effectiveness of machine-learning algorithms in visually distinguishing
cards as an added security measure against unauthorised cloned cards.

The methodology includes collecting datasets, building classification models (CNN, KNN and
SVM), performance evaluations and integration of the best-performing model into an NFC
prototype, Clone Guard. Performance evaluations included accuracy, precision, F1-score and
recall metrics. We found that CNN was the best-performing model, with a prediction accuracy
of 96 per cent.

Experimental results showed that noisy datasets produced a more robust model than noiseless
datasets. Heatmap visualisations indicate that distinct colours and bold text regions
contributed significantly to the model’s decision-making. Despite the high accuracy on test
data, the prototype performed less accurately when classifying scanned cards.

The study provided a basic evaluation of classification algorithms, concluding that deep
learning offered greater suitability. The implications of the prototype extended into the applied
research domain, offering a configurable and deployable solution to improve the resilience of
NFC-based access systems against unauthorised cloned cards.

Keywords: Near-field communication-based access systems, clone card detection, visual
authentication using machine learning, deep learning (CNN) for NFC security, Image-based
card verification.

Introduction

Near-Field Communication (NFC) is a wireless technology that facilitates communication
between devices over short distances. NFC technology is widely ingrained in our day-to-day life
primarily due to its ease of use, simplicity and various use cases such as in smart posters, e-
payments and facility access control systems.

However, despite its versatile applications, NFC technology imposes various resource and
storage constraints, leaving it susceptible to security exploits, including key cloning (Lee et al.,
2021; Singh et al., 2018). Furthermore, the emergence of hacktivist devices like the Flipper Zero
has simplified the card-cloning process, making it widely available to anyone regardless of
technical skill set (Flipper Devices Inc., 2024). Considering the context of access control
systems, cloning valid access cards is both a cyber and physical security concern as it provides
unauthorised access to physical facilities, generally unbeknown to the victim or security
personnel. For corporate businesses and other industries that rely on secure access control,
unauthorised access to their physical assets presents a range of privacy and financial
implications (Bernard, 2017).

Recognising this as a contemporary security challenge, this paper explores two key research



questions:

1. How effective are existing supervised machine-learning techniques in visually identifying access
cards?
2. How feasible is the proposed solution for real-world implementation?

The remainder of this paper is organised as follows: in the Literature Review, we summarise
related work to establish the academic context. The Methodology section outlines our
approach, including the testbed setup and system design. We then present quantitative
comparisons, supported by qualitative analysis of model and system performance in the Results
section. Finally, we provide a summary of the paper’s key contributions and conclude the paper
by suggesting directions for future research in the Conclusion section.

Literature review

Despite the progression of technology, persistent NFC security vulnerabilities such as relay
attacks, data corruption, eavesdropping, denial of service and cloning remain the focal point of
contemporary research (Singh et al., 2018). Countermeasures do exist and predominantly fall
within two categories: protocol authentication, data analysis or both (Lee et al., 2021; Yang et
al., 2023; Yang et al., 2024). Authentication approaches dominate much of the current literature
and are generally applied in the context of NFC-enabled smart devices. For instance, focusing
on a university context, Bouazzouni et al. (2016) propose an access control architecture using
Identity-Based Encryption and Trusted Execution Environments to verify the authenticity of
both the user and the NFC reader. A similar implementation is explored by Ali Khan et al.
(2020), where the authors propose a mobile application that requires users to verify a code sent
via SMS after scanning an NFC tag before accessing a physical facility. By focusing on smart
devices, these approaches circumvent the resource restrictions of traditional NFC systems,
allowing for the application of stronger authentication and encryption techniques (Yang et al.,
2024).

Additionally, unique solutions consisting of both machine learning (ML) and protocol
authentication were identified across various contemporary research (Bouazzouni et al., 2016;
Lee et al., 2021; Yang et al., 2024). Papers that applied ML typically leveraged classification
techniques under supervised (Bouazzouni et al., 2016; Gurulian et al., 2017; Lee et al., 2021;
Rengan, 2023) or semi-supervised models (Yang et al., 2024). Lee et al. (2021) combined
supervised deep-learning algorithms and radio frequency (RF) fingerprinting to determine NFC
tag authenticity. The system achieved an identification accuracy of 96.16 per cent; however,
concerns were raised about how different configurations could impact the ability of the system
to interpret the signal characteristics. Inspired by this approach, Bouazzouni et al. (2016)
focused on producing a less computationally expensive solution. The authors introduced an
intrusion detection system where RF signal characteristics were compared by a random forest
algorithm. Conversely, Yang et al. (2024) argue that the context of key-sharing supervised RF
authentication is not well-suited given its extreme computational requirements and inability to
accurately categorise malicious cards outside of the training dataset. To address this deficit,
Yang et al. (2024) explored a semi-supervised model to train and calibrate the score of both
legitimate and malicious RF signals and validated its performance in distinct applications.

While a variety of data analysis methods have been applied to enhance NFC security, the use of
image-classification techniques to validate the physical features of NFC cards remains
unexplored. Additionally, existing academic solutions often overlook usability and
deployability. To address these gaps, this paper investigates the application of ML to enhance
NEFC security by introducing an image-based classification approach to detect cloned access



cards. Beyond theoretical analysis, it integrates a classification model into a functional NFC

prototype in an experimental setting. The proposed solution prioritises practical usability,

ensuring security personnel receive real-time notifications of cloned card usage. This approach

strengthens NFC-based access control systems and provides a configurable and deployable

system to mitigate unauthorised card use in real-world settings.

Methodology

We have chosen design science research as the methodological framework due to its

structured approach to designing, prototyping and evaluating solutions in applied research (see

Figure 1). Given the need for systematic NFC system integration and iterative refinement, this

methodology provides a suitable structure for addressing the research objectives.

Problem
Identification

Y

Theory

Y

Objectives of

‘Concerns with Alpha prototype accuracy

\<

Proposed Design |

Study Design

!

4

Develop Solution <

!

| Evaluate Solution <

 Complete system performance

!

{ Results

Cloned NFC cards can not be
detected by traditional NFC systems

ML classification algonthms

Pre\ ious academic approaches*’solunons

Increased prediction accuracy
Improved design modularity |

- Hardware compaublhty
Image dataset collection
Desngn ML model archltecture

ML model trammg
Integrate model into system

Isolated ML performance -

Tables for quantitative data
- Descriptive/qualitative obx servations |
Flow & system dlagrams

Figure 1. The phases of the research design methodology

Algorithm selection

The theory phase of design involved familiarisation with existing ML solutions applied not only

to NFC security but to other image-classification applications. Three common algorithms —

namely K-Nearest Neighbour (KNN), Support Vector Machine (SVM) and Convolutional Neural

Network (CNN) — were noted due to their prevalence and suitability for similar image-

classification use cases (Kanawade et al., 2024). KNN was included due to its simplicity and

effectiveness in low-dimensional feature spaces, making it suitable for rapid similarity-based

classifications of distinctively different access cards. SVM was selected for its robustness with



smaller datasets with complex boundaries, making it suitable for identifying distinct features of
keycards based on their visual data. Lastly, CNN was selected as the algorithm excels at learning
complex features, enabling it to concentrate on prominent visual elements such as logos or
text.

ML enhanced NFC prototype

The primary objective was to implement and evaluate a typical NFC access system enhanced
with an integrated ML model capable of predicting the visual authenticity of the presented card
(Figure 2). The system is subdivided into three subsystems: the NFC reader, the ML. model and
the alert mechanism. The NFC system mimics traditional access control behaviour using a
MFRC522 NFC reader, which allows a user to scan their card and receive an LED indication of
whether access is granted or denied. When a unique identifier (UID) is detected, the connected
Raspberry Pi Camera Module 21 captures an image of the card. The image is then passed to a
pre-trained classification model for analysis. If classified as valid with at least 75 per cent
confidence, access is granted. If the features are inconsistent with expected characteristics, the
attempt is flagged as fraudulent and access is denied. Failed attempts will also trigger email
notifications to relevant security personnel. Source code for this prototype and the
implemented algorithms is available on GitHub (Gullotta and Prego, 2025).

Hardware

Hardware selection for the initial prototype was largely influenced by simplicity, cost-
effectiveness and ease of acquisition. The MFRC522 NFC reader, selected for its compatibility
with Raspberry Pi microcontrollers, supports reading and writing for ISO/IEC 14443 A/MIFARE
and NTAG cards at 13.56MHz (NPX, 2016). The typical signal distance for this module is within
50mm; however, in our instance the card was always scanned within 5mm of the reader. A 3D-
printed casing was made for the reader and LED positioning. Testing confirmed that the casing
did not affect NFC read accuracy or reliability.
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Figure 2: System model of the Clone Guard prototype

Dataset collection and preprocessing




Back and front images of 12 cards were collected using a Python script (Gullotta and Prego,
2025) to streamline the collection and categorisation of a sufficient volume and variety of data.
The resulting dataset was organised into nine classes (Appendix A). A multi-class approach
was chosen over a traditional binary classification to provide greater transparency in the
model’s decision-making process.

In total, 2700 images were collected with equal distribution across all classes. To introduce
variety, images were captured at time intervals while cards were repositioned between shots.
This produced natural differences such as glare, blur and partial framing.

The target class consisted of university student cards. To avoid overfitting to non-relevant
details (e.g. a single student’s photo), three different student cards were used. While this is
acknowledged as a limitation, CNN heatmap visualisations suggested that the model
primarily focused on broader card regions rather than individual faces or IDs. The other
categories were selected to represent cards with physical similarities to the target (e.g. colour,
layout or text placement), creating a realistic challenge for the classifier. Two datasets were
constructed from this process: one with an optimistic noiseless white background and the other
with a realistic, noisy background. As part of preprocessing, pixel normalisation was applied to
scale values from [0, 255] to [0, 1], ensuring uniform feature contribution during training (Singh
and Singh, 2020). No additional augmentation, cropping or custom feature extraction was
performed, allowing the CNN to learn features directly from the raw image data.

CNN heatmaps revealed that distinctive background features (e.g. chairs) were influencing
model predictions. To address this, two strategies were considered: (1) introducing greater
variability in background conditions, and (2) applying preprocessing methods such as cropping
or denoising. Given the exploratory nature of this prototype, we adopted the first approach and
collected a third dataset of 1200 images with increased background variability. Class labels were
also simplified into four categories (see Appendix B), aligning with the practical goal of
distinguishing between valid and invalid cards.

Performance evaluation

The experimental testbed consisted of a CPU laptop with four cores, 16GB RAM and 3.30GHz

frequency on which each algorithm was trained and evaluated in separate Jupyter notebooks.

The image datasets were categorised in a folder structure, with folder names representing the
corresponding class labels.

Python functions from the sci-kit-learn module were used to automate classification reports
and confusion matrices for each model. This provided various quantitative values including
precision, recall, F1-score and overall accuracy for each class. We also conducted a
comparative analysis based on the mentioned metrics and recorded any qualitative
observations. Once the most suitable model was identified, it was integrated into the simulated
NFC system, and further end-to-end performance testing was conducted manually. The CNN
model output was converted into a TensorFlow Lite format to optimise performance.
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Results

Experiment 1: Evaluation of machine-learning algorithms for card classification

The objective of the first experiment was to evaluate the suitability of SVM, KNN and CNN
classification algorithms for accurately labelling various NFC card types. This experiment aimed
to address the first research question by assessing the effectiveness of deep learning in image-
classification tasks compared to traditional ML models.

For SVM and KNN, preprocessing involved resizing all images to 23 x 23 pixels, followed by
dataset partitioning into training (80 per cent) and validation (20 per cent) sets and 36 testing
images, with a fixed random seed of 123. Each partition was normalised by scaling pixel values
from [0, 255] to [0, 1]. Prior to testing, hyperparameter optimisation was performed using
Scikit-Learn’s Grid Search to determine the best hyperparameter configurations for each model
(see Table 1 as well as Appendix C for the CNN model architecture).

Algorithm | Seed | Image Dimensions | Hyperparameters

CNN 123 | 240x 240
SVM 123 | 23x23 {n_neighbours =1}
KNN 123 | 23x23 { kernel = ‘rbf’, gamma = 0.001, C=10}

Table 1. Summary of configuration and parameter values used across the implemented
algorithms. CNN model architecture can be found in Appendix C

The CNN model followed a slightly different preprocessing approach. Images were resized to
240 x 240 pixels using OpenCV and split into training (80 per cent) and testing (20 per cent) sets
with a random seed of 123. The pixel values were normalised from [0, 255] to the [0, 1] range
before being passed directly to the CNN model. The CNN model was implemented using
TensorFlow (TensorFlow, 2025) and trained over 10 epochs.

To assess each model’s performance, the trained classifiers were applied to the test dataset, and
classification predictions were generated for all nine classes. A comprehensive description of
each class is provided in Appendix A. Performance metrics — including precision, recall, F1-
score and accuracy as defined in (1), (2), (3) and (4), respectively — were analysed using
classification reports and confusion matrices.

SVM Classification Report

Precision | Recall | F1-Score | Support




BackColour 0.93 0.83 0.88 52
BackDL 0.92 0.82 0.87 55
BackOther 1.00 0.83 0.91 59
Blank 0.94 0.95 0.95 64
FrontColour 0.62 1.00 0.76 56
FrontDL 0.95 0.84 0.89 64
FrontOther 0.80 0.82 0.81 57
UCBack 0.93 0.96 0.94 70
UCFront 0.96 0.79 0.87 63
Accuracy 0.87 540
Macro Average 0.89 0.87 0.87 540
Weighted Average | 0.9 0.87 0.88 540

Table 2: SVM classification results

Referring to Table 2, the SVM model exhibited moderate classification performance, achieving
an overall accuracy of 0.87. However, performance varied considerably across classes. In
particular, the model struggled with the ‘FrontColour’ class, yielding a relatively low F1 score of
0.76. Despite this, the macro-averaged and weighted F1 scores were 0.87 and 0.88, respectively,
indicating that while some class-level imbalances exist, the model performs reasonably well

overall.

KNN Classification Report

Precision | Recall | F1-Score | Support
BackColour 0.95 0.71 0.81 52
BackDL 0.93 0.76 0.84 55
BackOther 0.93 0.97 0.95 59
Blank 0.71 0.95 0.81 64
FrontColour 1.00 0.93 0.96 56
FrontDL 0.94 0.91 0.92 64
FrontOther 0.93 0.96 0.95 57
UCBack 0.79 0.89 0.84 70
UCFront 1.00 0.92 0.96 63
Accuracy 0.89 540




Macro Average 0.91 0.89 0.89 540

Weighted Average | 0.91 0.89 0.89 540

Table 3: KNN classification results

The KNN model slightly outperformed the SVM, achieving an overall accuracy of 0.89 as shown
in Table 3. It maintained high precision and recall across most classes, with F1-scores ranging
from 0.81 to 0.96. Notably, the ‘FrontColour’ and ‘UCFront’ classes achieved the highest F1-
scores (0.96), while ‘Blank’ and ‘BackColour’ were the lowest (0.81). The macro and weighted
average F1-scores were both 0.89, indicating consistent performance across classes.

CNN Classification Report
Precision | Recall | F1-Score | Support

BackColour 0.95 0.94 0.94 62
BackDL 0.95 0.92 0.93 61
BackOther 0.92 0.93 0.93 61
Blank 0.96 0.98 0.98 52
FrontColour 0.98 0.99 0.99 62
FrontDL 1.00 0.98 0.98 65
FrontOther 0.95 0.96 0.96 56
UCBack 0.96 0.96 0.96 53
UCFront 0.99 1.00 0.96 58
Accuracy 0.96 540
Macro Average 0.96 0.96 0.96 540
Weighted Average | 0.96 0.96 0.96 540

Table 4: CNN classification results

The CNN model outperformed both SVM and KNN, achieving the highest overall accuracy of
0.96, as shown in Table 4. Precision, recall and F1-scores exceeded 0.90 across all classes,
reflecting strong and consistent classification performance. ‘FrontColour’ achieved the highest
F1-score of 0.99, while the lowest-performing classes, ‘BackDL’ and ‘BackOther’, still attained
F1-scores of 0.93. Both the macro and weighted average F1-scores were 0.96, underscoring the
model’s superior generalisation and accuracy compared to the other models.

The experimental results suggest that CNN offers the most consistent and reliable performance
across all classes. The deep-learning model effectively captured feature patterns within the
dataset, leading to improved generalisation on unseen test samples.

Despite efforts to maintain consistent dataset partitions, discrepancies arose due to differences



in dataset randomisation between Scikit-learn and TensorFlow implementations. This is

reflected in variations in class support values across Tables 2, 3 and 4. However, the overall

weighted averages provide a reliable basis for model comparison.

CNN exhibited the highest accuracy and consistency, making it the most suitable choice for
further experimentation and implementation. This discovery demonstrates the potential of

deep learning in NFC security applications, as it effectively distinguishes between visually

similar keycards with minimal misclassification.

Experiment 2: Dataset optimisation for improved classification performance

Experiment 2 aimed to assess how the CNN model performed with different dataset conditions:

optimistic (white background), realistic (noisy background), and combined datasets. The goal is

to determine which dataset configuration would yield the best generalisation performance

while minimising overfitting.

To facilitate this, 36 images (4 from each class) were manually separated from the realistic

dataset for use as an independent testing partition. The CNN model from Experiment 1 was

used across three training scenarios:

e Test 1: Model trained using optimistic dataset (white background).
o Test 2: Model trained using a realistic dataset (noisy background).
e Test 3: Model trained using a combination of both datasets.

Each model was evaluated using classification reports, confusion matrices and accuracy plots.

The learning curves for each test were analysed to examine training and validation loss trends.

Training Dataset Experimentation

Optimistic Dataset Realistic Dataset Combined Dataset
F1- F1- F1-
Precision | Recall Precision | Recall Precision | Recall
Score Score Score
Macro
0.97 0.97 0.97 |0.98 0.97 0.97 |0.94 0.94 0.94
Average
Weighted
0.97 0.97 0.97 |0.98 0.98 0.98 |0.94 0.94 0.94
Average

Table 5: Classification report results for the validation dataset
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Figure 3: Accuracy and validation loss curves from the model trained on optimistic data over 10
epochs

Test 1 (Optimistic Dataset): The learning curve for the optimistic dataset in Figure 3 showed
that training accuracy steadily increased and stabilised near 1.0, while validation accuracy
fluctuated around 0.9. Validation loss initially decreased but later exhibited instability,
suggesting overfitting.
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Figure 4: Accuracy and validation loss curves from the model trained on realistic data over 10
epochs

Test 2 (Realistic Dataset): Training accuracy rapidly increased and reached near-perfect levels
by epoch 4, while validation accuracy stabilised around 0.95, as shown in Figure 4. The learning
curve demonstrated a sharp decline in both training and validation loss, indicating effective
learning with minimal overfitting.
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Figure 5: Accuracy and validation loss curves from the model trained on combined data over 10
epochs

Test 3 (Combined Dataset): Figure 5 shows that the training accuracy approached 1.0, but
validation accuracy peaked at around 0.9 with fluctuations, suggesting instability in
generalisation. Training loss significantly decreased, but validation loss fluctuated between
0.25 and 0.5, indicating potential overfitting during training.

All learning curves (Figures 3, 4 and 5) indicated signs of overfitting, particularly in the third or
fourth training epoch. This suggests that the model was beginning to learn from noise within
the dataset, leading to increased validation loss, as the CNN memorises irrelevant background
patterns instead of generalisable features of the card. The optimistic and combined dataset
models exhibited more pronounced fluctuations in validation accuracy and loss compared to
the realistic dataset model, indicating that the noise present in the optimistic dataset was
influencing the model’s learning process. This could be attributed to reduced object boundary
definition, which limited the learning of distinguishing features when predominantly white
cards were placed against a uniform white background.



Figure 6: Samples of the Grad-CAM heatmaps indicating the regions of the image that have the
most impact on the model’s classification predictions

Given the autonomous feature extraction nature of deep-learning algorithms, it is challenging
to determine which regions of an image the model relies on for classification predictions. To
address this, a Gradient-Weighted Class Activation Map (Grad-CAM) was applied to the last
convolutional layer of the CNN model to generate heatmaps for the testing images (see Figure
6). The heatmaps revealed that distinct colours and bold text regions significantly contributed
to the model’s classification process. However, some noise interference from the background
was also highlighted in most testing images. While these background regions were relatively
small compared to the foregrounded card area, they exhibited high intensity, indicating a



strong influence on predictions. Future work should investigate preprocessing methods, such as
deterministic noise removal, to mitigate overfitting to dataset-specific noise, thereby
improving the CNN’s performance on varied and unseen data.

This experiment successfully refined the dataset selection process, confirming that the realistic
dataset with a noisy background is best suited for NFC card classification. This reinforced the
decision to use the CNN model trained on the realistic dataset for the final prototype
implementation.

Experiment 3: Deployment and real-world evaluation

Following model experimentation, a refined CNN model trained on a more varied realistic
dataset was deployed onto the Raspberry Pi 5 microcontroller for integration testing and
performance evaluation. The objective of this experiment was to validate the project’s real-
world applicability by assessing Clone Guard’s ability to correctly and timely classify NFC access
cards.

To maintain consistency across test scenarios, all manual tests were conducted in a controlled
lighting environment using the Raspberry Pi Camera 2 Module. The test procedure involved
presenting three different cards to the system’s reader: a valid university student card (front
and back tested separately), a blank white card and an invalid card. Each test was repeated ten
times to account for potential variability in results due to card orientation. Clone Guard’s
response was assessed by recording the following parameters: response time (measured from
NFC card read to LED response), predicted classification and confidence score, and actual LED

response.
System Performance
Test Case Response Time (sec) | System Accuracy | Classification Accuracy
Student Card (Front) | 0.10 70% 90%
Student Card (Back) | 0.09 70% 90%
Blank Card 0.09 90% 50%
Invalid Card 0.09 100% 90%

Table 6: Summary of system performance metrics

For valid university student cards with a confidence score of at least 75 per cent, the expected
system response was to activate the green LED, whereas for invalid cards, the red LED was
expected as demonstrated in the video here Reinvention Vol18 12 video for articles. System
accuracy for each test suite was calculated based on the number of correct responses.

Overall, these results confirm that Clone Guard performed with high accuracy and confidence
across various card types. The findings strongly suggest that the system is viable for real-world
deployment, demonstrating the effectiveness of deep-learning algorithms such as CNN in
distinguishing between authentic and cloned NFC access cards. However, translating this proof-
of-concept into a deployed solution introduces additional considerations beyond model
accuracy, particularly around data volume, hardware and system efficiency.

The prototype demonstrated the feasibility of integrating ML into an NFC access system, but


https://warwick.ac.uk/fac/cross_fac/iatl/research/reinvention/vol18i2_videos

several challenges remain before real-world deployment. Most notably, the training dataset was
relatively limited in size and diversity, which restricts model robustness under varied
conditions. To address this, the NFC-camera system could be deployed without the ML
component to collect a larger and more representative dataset before model training. From a
hardware perspective, the MFRC522 reader and Raspberry Pi Camera Module 2 were cost-
effective selections for prototyping but would likely require upgrading for deployment. More
robust NFC readers and higher-resolution cameras could improve reliability and image quality.
Additionally, energy consumption was not prioritised in this study, and continuous camera
operation combined with real-time ML inference introduces power demands beyond those of
conventional NFC systems. Lightweight ML models or specialised microcontrollers with
integrated Al acceleration should be explored to address energy concerns. While this work
demonstrates technical feasibility, practical deployment will require refinements in datasets,
preprocessing, hardware selection and energy efficiency to balance security benefits with
system scalability.

Conclusion

This research evaluated the effectiveness of ML algorithms in distinguishing the physical
features of NFC access cards, aiming to strengthen NFC access control systems against cloned
cards. Experiments demonstrated that deep learning, specifically CNN, can confidently classify
unique university student cards among visually similar NFC cards. Further quantitative results
identified that training a CNN on a realistic, noisy dataset yielded optimal performance, likely
the result of more distinct object boundaries between the cards and background. The study
further validated real-world applicability by designing and integrating an end-to-end system
capable of capturing card scans and processing card features to determine access eligibility.

Despite these promising results, limitations were observed. Model predictions were
occasionally inconsistent due to background noise, potentially the result of the relatively small
dataset and the minimal preprocessing applied prior to model training. Future work should
explore larger and more varied datasets, along with deterministic noise removal or to enhance
classification accuracy and generalisability.

Further optimisation is necessary to enhance Clone Guard’s performance and readiness for
large-scale deployment. Future efforts should focus on improving the classification model’s
learning and predictive abilities. Hardware limitations and real-time inference requirements of
the current system present scalability challenges. For more practical deployment, a purpose-
built device with specialised hardware, potentially featuring a card slot for controlled image
capture, could significantly improve both usability and system performance.

Overall, this research introduces a novel image-based approach to detecting cloned NFC cards
and provides a working prototype that validates the feasibility of a wireless, ML-driven access
control system. With targeted refinements, Clone Guard has the potential to evolve into a
scalable, secure solution for NFC access protection, laying the groundwork for future
advancements in secure access control technologies.
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Appendix A

Class labels used in Experiment 1 and 2

Class Description
UCBack Back side of the University of Canberra (UC) student card, containing a
ac
barcode, contact information and text.
UCEront Front side of the UC student card, showing the university logo, student profile
ron
photo and identifying details.
Back side of other invalid cards displaying barcodes, terms and conditions,
BackOther o
or minimal text.
Blank Completely blank card, with no visible text, images or designs.
Front side of generic membership or loyalty cards, typically featuring coloured
FrontColour . . .
graphics, branding or text but not belonging to UC.



Front side of a driver’s licence, displaying personal details, photo and official

FrontDL . . .
licence information.
FrontOther | Front side of other invalid cards showing branding, logos or designs.
Back side of generic membership or loyalty cards, usually including a
BackColour . . .
barcode, magnetic strip or terms and conditions.
Back side of a driver’s licence, containing text, barcodes and security
BackDL
features.
Appendix B

Refined class labels used in the deployed model (Experiment 3)

Class Description
ValidBack Back side of the University of Canberra (UC) student card, typically containing
alidBac
a barcode, contact information and text.
. Front side of the UC student card, showing the university logo, student profile
ValidFront . o .
photo and identifying details.
InvalidFront
. Back side of blank and generic membership cards, usually including a
InvalidBack . . ..
barcode, magnetic strip or terms and conditions.
Appendix C
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Figure 7: The CNN model architecture used in this research
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Glossary

Near-Field Communication: Short-range wireless technology that enables data exchange
between devices

Machine learning: A subset of artificial intelligence that enables computers to learn from data,
identify patterns and make decisions with minimal human intervention

Random forest algorithm: A machine learning method that combines multiple decision trees
to make more accurate and stable predictions

Image-based classification approach: A technique that uses images to train models to
recognise and categorise visual features

Design science research: A research method focused on prototyping practical solutions to
solve real-world problems while contributing to scientific knowledge

Multi-class approach: A type of classification where the model learns to distinguish between
three or more categories

Overfitting: When a model learns patterns that are too specific to the training data,
performing well on it but poorly on new, unseen data

Heatmap visualisations: Graphical display that use colour intensity to show where a model
focuses most when making decisions

Classification report: A performance evaluation metric for classification models that provides
key statistics such as precision, recall and F1-score for each class in a dataset

Confusion matrix: A visual summary of the model’s correct and incorrect predictions

Precision: Percentage of positive instances out of the total predicted positive instances
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Recall: Percentage of positive instances out of the total real positive instances

F1-score: The mean of precision and recall values, providing a single metric to evaluate the
performance of a classification model

Deep learning: A subset of machine learning that uses artificial neural networks with multiple
layers to model complex patterns and representations in large datasets.

Fixed random seed: A predefined number used to control random processes in experiments so
that results can be exactly reproduced each time

Hyperparameter: A setting chosen before training a model that influences how well the model
learns from data

Noisy dataset: In the context of this research, a collection of images with cluttered
backgrounds used to make the model more robust to real-world variation
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