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Abstract

Throughout the COVID-19 pandemic, the use of non-pharmaceutical interventions (NPIs), including

lockdown measures, by governments around the world has been informed by mathematical modelling.
Broadly, these models look to gauge how well NPIs control disease transmission. Here we present a model

that not only forecasts the effectiveness of NPIs in restricting contacts but also assesses their in�uence on

the mental wellbeing of affected populations. Our model is informed by data from the United Kingdom Time

Use Survey, 2014-2015. This survey recorded the time participants spent in different social settings as well as

self-reported enjoyment in these settings, allowing us to augment a quantitative model of social contact
behaviour with associated wellbeing estimates. We use this model to assess the effectiveness of NPIs aimed

at reducing social contacts in different settings and estimate their impact on population-level wellbeing. Our

�ndings indicate that workplace closures represent the most effective intervention for slowing disease

spread, while NPIs targeting other contact locations have comparatively limited impacts on transmission.

Our model suggests that workplace closures not only effectively reduce infections but also have a relatively
modest effect on population wellbeing levels.

Keywords: Mathematical epidemiology, infectious diseases, COVID-19, wellbeing modelling, mixing patterns,

time-use surveys.

Introduction

Since early 2020, governments have worked to control the COVID-19 pandemic. Prior to the development of

vaccines, non-pharmaceutical interventions (NPIs)  were the primary method of reducing infection for

governments (Hale et al., 2021). In the years following the outbreak of the pandemic, there has been a rapid
expansion in the literature assessing various NPIs, including mask wearing, school closures, lateral �ow

testing  and travel restrictions in populations around the world (Banks et al., 2020; Dimeglio et al., 2021;

Flaxman et al., 2020; Jarvis et al., 2020; Lai et al., 2020; Leng et al., 2022; Perra, 2021; Firth et al., 2020; Prem

et al., 2020; Silva et al., 2021). However, when assessing the success of these measures, it may be necessary to

consider the potentially damaging effects that measures such as school and work closures have on the
mental and emotional wellbeing of the affected population (White and Van Der Boor, 2020).

Early reports of COVID-19 indicated a strong age-strati�ed component in epidemiological risk, a suggestion

that has been validated over the course of the pandemic (Li et al., 2020; O’Driscoll et al., 2021). Building on

previous developments in infectious disease modelling (Anderson et al., 1986; Keeling and Rohani, 2007;

Schenzle, 1984), age-structured infectious disease models were widely used to model the dynamics of the
COVID-19 pandemic (Davies et al., 2020; Hilton et al., 2022; Hilton and Keeling, 2020; Moore et al., 2021;

Prem et al., 2020).

The transmission of respiratory infections such as COVID-19 is driven primarily by social contacts, making it

important that relative intensities of the age-strati�ed transmission pathways in these models re�ect high-
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quality real-world estimates of age-strati�ed contact rates. The ‘contact survey’ methodology developed in

the widely in�uential POLYMOD study (Mossong et al., 2008), and which has since been expanded upon in

other large studies such as Prem et al. (2021), can be used to calculate contact matrices  which quantify
mixing patterns in a strati�ed population. An alternative source for age-strati�ed contact rate estimates is

time-use surveys . These surveys collect data on how individuals spend their time (i.e. location, activities)

from which researchers can infer empirical estimates of the mixing patterns of a population. Time-use

surveys have previously been used to determine mixing patterns for epidemiological modelling in Zagheni et
al. (2008), who developed a methodology to estimate time-of-exposure matrices summarising the risk of
infection over time in different social settings. Dynamic models  of infectious disease have also been

developed using data from POLYMOD (Fumanelli et al., 2012), time-use data (Ajelli et al., 2014) or a

combination of the two (van Leeuwen et al., 2022) to inform their mixing patterns. The latter (van Leeuwen

et al., 2022) employed time-use data to augment contact matrices to reduce contacts by activity, thereby

enabling the simulation of �ne-grained interventions.

In this study, we build on previous studies of age-structured infectious disease dynamics by augmenting an

age-strati�ed contact model with an estimate of how changes in social contact behaviour induced by NPIs

can impact societal wellbeing. Our model works by estimating the basic reproductive ratio , a fundamental

epidemiological quantity determined by both the biology of the pathogen in question and the social

dynamics of its host population, from age-strati�ed estimates of a population’s time-use behaviour. These
time-use estimates summarise the time spent exposed to different sections of the population, from which we

can estimate the basic reproductive ratio, but also the population’s self-reported enjoyment associated with

different social settings, which we use as a proxy for population-level wellbeing. We model the impact of

NPIs by manipulating the age-strati�ed time-use pro�le to re�ect the impact of changes to social contact

behaviour (for instance, by reducing average time spent in work settings and increasing time spent in home
settings by a corresponding amount), and then calculating the resulting values of basic reproductive ratio

and population-level wellbeing under this modi�ed time-use pro�le. This allows us to identify combinations

of measures that are likely to reduce transmission of infection while minimising harmful impact on

population-level wellbeing.

Methods

We used data from the UK Time Use Survey 2014-2015 (TUS) (Gershuny and Sullivan, 2017) to generate age-

structured contact matrices quantifying the expected amount of social contact between age groups. The TUS
covered over 10,000 participants and recorded their location and activities at a 10-minute temporal

resolution, providing a highly granular sample of population behaviour. Further details on the TUS and how

it was used in this investigation can be found in Appendix A. The age-structured contact matrices we derive

are analogous to the social contact matrices estimated in studies such as the POLYMOD study of Mossong et
al. (2008) and Prem et al. (2021). Whereas estimates from social contact surveys will only account for
contacts that individuals have remembered and recorded, estimates from time-use surveys have the potential

to capture more diffuse casual contacts. Following the methodology of Zagheni et al. (2008), the social

contact intensities we generate are to be interpreted as the relative risk to an individual of age class 𝑖 from

the aggregate of individuals of age class 𝑗 in a given location on a single day. This exposure level is measured
in person-hours: 1 hour spent in contact with 1 person; if an individual of age class 𝑖 has probability 𝑞 of

being in location 𝑙 in hour 𝑡 and there are an expected 𝑌 individuals of age class 𝑗 in that location in hour 𝑡,
then the expected number of person-hours is 𝑞𝑌. The resulting contact matrices are not symmetric because

the probability of encountering an individual in a given age class is dependent on, among other factors, the
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proportion of the population that are in that age class. For example, there are many more individuals in the

UK aged 25-29 than aged 80-84 (ONS, 2024). This means that a single individual aged 80-84 will make many

more contacts with 80–84-year-olds than in the other direction. We generate matrices for each location
listed in the UK TUS and aggregate them into three broad location categories: ‘external’ interactions,

capturing all non-home locations; ‘within-household’ contacts, capturing contacts between members of the

same household; and ‘other home’ contacts, corresponding to an individual’s interactions in a household

setting which is not their own home. This aggregation is made to re�ect the fact that mixing behaviour in

each of these three categories is extremely different and is treated separately; contact within a household are
likely to be much more intense than those in an external location such as a workplace. A summary table of

the locations recorded by the survey, including the categories into which we placed them, can be found in

Appendix C.

Figure 1: Estimated contact intensity matrices for the following contact settings: a) external; b) within-household;
c) other home.

In Figure 1, we visualise the location-speci�c contact matrices generated from the TUS data. Details on the

construction of these matrices can be found in Appendix B. Our contact intensity calculations assume that
external contacts involve exposure to the general population, whereas within-household contacts are limited

to those individuals present in a single household, and so the ‘external contacts’ intensities are of a higher

order of magnitude than both sets of household-based contact intensities. External contacts (Figure 1a) are

characterised by intensive mixing of younger age groups, likely at school, and a sharp decrease past age 65.

Within-household contacts (Figure 1b) show a highly age dependent structure, with strong mixing of people
of the same age as well as contacts between carers and children being clearly visible in the two smaller

branches either side. Other home mixing (Figure 1c) is characterised by frequent contact between young

individuals and individuals of all ages, indicating that younger people are more likely to be visiting

individuals in another home than individuals aged 20+. These qualitative patterns are consistent with those

found in previous studies of time-use data (Zagheni et al. 2008), and the distinctive three-armed shape of the
within-household mixing matrix  is similar to that seen in the POLYMOD study (Mossong et al., 2008).

We analyse the epidemiological impact of NPIs by estimating the effective reproductive ratio  which results

from a speci�c package of NPIs. The basic reproductive ratio, 𝑅0, is de�ned as the average number of people

infected by an infected person at the early stages of an outbreak, while the effective reproductive ratio, 𝑅, is

de�ned analogously as the average number of people infected by an infected person under a given set of
control measures. These reproductive ratios can be obtained through eigenvalue  calculations on social
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contact matrices (Keeling and Rohani, 2007), such as the ones we obtained from TUS data. We �rst assume a

value of 𝑅0 and scale the contact matrix appropriately so that it re�ects this value. We can thus estimate the

impact of NPIs by adjusting the contact matrices to re�ect behavioural changes and then calculating the
resulting effective reproductive ratio, as detailed in our Appendices D and E. Throughout these calculations

we assume a constant rate of recovery – assumed to be 1/7 so that the expected length of infection is seven

days. We augmented this projection of epidemiological impact by estimating the impact of NPIs on

population wellbeing using the estimates of reported enjoyment by location provided in the TUS data. We

make wellbeing calculations �rst under the ‘best-case scenario’ assumption that additional time spent at
home takes the same enjoyment value as time otherwise spent at home. Additionally, we consider a ‘worst-

case scenario’ in which all additional time spent at home is assumed to take the lowest enjoyment value of 1.

See Appendix F for further details on enjoyment calculations and Appendix G for distributions of enjoyment

levels in selected locations.

We analysed the effect of three basic classes of NPI on 𝑅0 and wellbeing levels. These NPIs were closure of
workplaces and schools, a prohibition of visits to other households, and the closure of leisure locations such

as hospitality establishments, sports centres, art museums and shops. For each of these measures, we

calculated reproductive ratios and projected enjoyment scores as a function of the degree of stringency of the

measure, de�ned to be the proportion of total time spent in a location which is replaced by time at home

under the NPI. An NPI with stringency 𝑎 affecting location 𝑙 should thus be interpreted as scaling the
probability that an individual is in location 𝑙 at a given time by 𝑎, with the resulting ‘lost’ time being balanced

by an increase in the probability that they are at home at that time. An NPI of stringency 𝑎 = 0 would thus

require all individuals to stay home whenever they would usually be at the location affected by the NPI, while

an NPI with stringency 𝑎 = 1 would have no impact on time use. Calculations around the implementations of

NPIs are covered in Appendix D. To account for uncertainty in the relative contributions to the population-
level epidemic made by within- and between-household transmission, we repeat our analysis for three

different values of the susceptible-infectious transmission probability (SITP) (House et al., 2022). This

quantity, which we denote 𝑝, is de�ned as the probability that a susceptible individual is infected by the

index case of an outbreak in their household. For each value of the SITP, we assume a baseline pre-NPI

reproductive ratio of 𝑅0 = 4, which is largely consistent with the range of estimates for the reproductive ratio
of wild-type COVID-19 produced in 2020 (Liu et al., 2020). Our analysis thus focuses on COVID-19-like

population-level spread but explores uncertainty in the relative contributions to this spread of within- and

between-household transmission, with models with lower SITPs having higher levels of between-household

spread to compensate. The effect of the value of 𝑝 on the contributions to the value of 𝑅0 of different

locations can be seen clearly in Table 1.

p = 0.25 p = 0.5 p = 0.75

Within-household 8.83% 17.66% 26.49%

Other home 0.78% 1.86% 3.67%

Work 85.02% 75.69% 65.69%

Leisure 2.11% 1.88% 1.63%

Table 1: Contributions of different locations to R0 under varying assumptions of within-household transmission
probability.
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Results

In Figure 2, we plot the estimated effective reproductive ratio 𝑅 and the projected mean enjoyment score as a

function of the stringency of NPIs affecting schools and workplaces (Figures 2 a)–c)), visits to other

households (Figures 2 d)–f)) and locations associated with leisure activities (Figures 2 g)–i)) under the

assumption of weak (𝑝 = 0.25), intermediate (𝑝 = 0.5) and strong within-household transmission (𝑝 = 0.75).
Our results suggest that school and workplace closures are by far the most effective measure, although

achieving an effective reproductive ratio below the critical epidemic threshold of 𝑅 = 1 is only possible with

highly stringent measures and when levels of within-household transmission are low. This re�ects the much

higher proportion of time spent at work (10.5 per cent) than in other people’s homes (3.2 per cent) and in

locations associated with leisure (4.7 per cent) in the TUS. Additionally, the commonality of a shared
work/school day among the working and school-aged population further ampli�es the absolute impact of

proportional changes in time use, particularly accentuating the signi�cance for work locations compared to

other settings.

Figure 2: Single location NPI plots. a), b) and c): Projected wellbeing level and reproductive ratio as the closure
levels of workplaces and schools varies, for three SITP values. d), e), f): Projected wellbeing level and reproductive
ratio as the level of restriction for visits to other homes varies, for three SITP values. g), h), i): Projected wellbeing
level and reproductive ratio as the closure levels of leisure locations varies, for three SITP values. Dotted lines
represent the inter-quartile range (IQR) for the projected population wellbeing distribution under each of the
wellbeing scenarios.

In general, the effectiveness of an NPI decreases with an increased level of within-household transmission

because some of the external infections that are prevented by the NPIs are offset by an increased potential
for infection within the household. The non-linear shape of the curves in Figure 2 demonstrate this offset,

with highly stringent measures offering diminishing returns. This is particularly pronounced for closures to
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leisure (Figures 2g)–i)). Since people spend relatively little time in leisure locations – and that time is less

likely to overlap with others than say time spent at work – there is lower risk of infection in those locations.

Therefore, stringent measures that result in a lot of that time being spent at home, a higher risk location,
may result in a higher reproduction ratio than the base scenario with no NPIs.

Under the best-case scenario model, the NPIs have negligible to positive effect on wellbeing levels since

individuals in the TUS generally reported higher enjoyment when at home than at work, and similar levels of

enjoyment for time spent at home and on leisure activities away from home. Therefore, when NPIs are

implemented and time spent at work or in leisure locations is moved to time spent at home, the wellbeing
measure increases or is unchanged respectively. At the opposite extreme, the worst-case scenario model

predicts a signi�cant negative effect on population-level wellbeing. As is the case for the effective

reproductive ratio, we see much more substantial changes in wellbeing under school and workplace closures

than under the other NPIs as a result of the large amount of time spent in the workplace. The inter-quartile

range (IQR) for the wellbeing under each wellbeing scenario are shown by the dotted lines. This is the IQR for
all wellbeing scores, not a projection of the IQR under no intervention.

Figure 3: Two location NPI plots. a), b) and c) are graphs showing the effects of implementing the three speci�ed
combinations of NPIs on 𝑅. d), e) and f) are graphs showing the effects of implementing the three speci�ed
combinations of NPIs on wellbeing in both the best- and worst-case scenarios. All results are for an SITP value of
𝑝 = 0.25. Dotted lines represent the IQR for the projected population wellbeing distribution under each of the
wellbeing scenarios.

The projected impacts of implementing packages of NPIs targeting two categories of transmission
environment are plotted in Figure 3. Packages including work closure measures (Figures 3a), b), d) and e)) are

projected to be capable of bringing the effective reproductive ratio below 1, consistent with the single-route

analysis which projected that work closures would be substantially more effective than restrictions targeting
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other routes of transmission. Our simple wellbeing model suggests that under best-case scenario conditions,

these packages will have minimal impact on mean enjoyment levels, while causing a more substantial

reduction in mean enjoyment than work closures alone under worst-case scenario conditions. Targeting
public leisure activities and visits to other homes (Figures 3c) and f)) is projected to have minimal impact on

the effective reproductive ratio while having minimal impact on mean enjoyment under the best-case

scenario and substantially reducing mean enjoyment under the worst-case scenario.

Discussion

In this study, we have used a simple mathematical model to assess the impact of NPIs both in an

epidemiological sense and in terms of their potential impact on population-level wellbeing. The large sample

size and �ne temporal resolution of the TUS data allowed for detailed modelling of the behavioural impact of
different NPI packages. Our results suggest that reductions in time spent at work are likely to have a much

higher impact on the spread of infection than restrictions targeting leisure activity and household visits

while having minimal impacts on population-level wellbeing. This re�ects the long durations spent at work

recorded by many TUS participants and the comparatively low levels of enjoyment recorded there. There is

thus a substantial accumulation of person-hours in these locations, concentrating the risk of disease
exposure in this location. In scenarios where transmission is primarily along external rather than within-

household lines (i.e. the SITP is small), work closures are suf�cient to bring 𝑅0 below 1. In contrast, the

combination of relatively short durations and high enjoyment levels recorded by TUS participants in leisure

locations and at other households means that interventions focusing on these locations are projected to have

minimal impacts on infectious disease transmission and negative impacts on population-level wellbeing.

Our epidemiological �ndings – namely that work and school are the location that contributes the most to the

reproductive ratio and restrictions to these locations have the largest impact on infection spread – agree

qualitatively with results of van Leeuwen et al. (2022). Davies et al. (2020) �nd that NPIs alone are unlikely to

be suf�cient to reduce the reproductive number below 1, and thus control an outbreak, unless full ‘lockdown’

measures are taken. Van Leeuwen et al. (2022) also �nds that limiting contacts in only one category of
location – for example, other home visits or shops – is not enough to reduce case numbers signi�cantly. This

agrees with our �ndings that the selective closure of environments is insuf�cient and high levels of closure

of workplaces and schools would be necessary to achieve a reproductive ratio below 1.

The wellbeing model we have proposed here represents a simple ‘�rst order’ approximation of actual

psychological responses to NPIs, intended to point the way forward to more detailed and realistic
combinations of epidemiological and psychological dynamics. In practice, the like-for-like approach we have

taken to our enjoyment calculations, with each block of time taking an independently assigned enjoyment

value based on location, is unlikely to re�ect actual human psychology. Our model could be expanded upon

to take a more holistic approach to re�ect overall wellbeing – for instance, by reducing enjoyment levels in

proportion to the degree of disruption caused by NPIs. At the �ner scale, using recorded activities alongside
location to determine projected enjoyment levels could offer an improvement. In particular, our projected

increase in mean enjoyment resulting from workplace restrictions may re�ect enjoyment levels recorded at

home mostly corresponding to leisure time, and it is possible that we will see different responses if we

replace enjoyment levels recorded in the workplace speci�cally with levels recorded for time spent working at
home in the TUS.
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The main strength of our epidemiological model is its coupling to a model of wellbeing, with our basic

approach pointing the way towards more complex models with the potential for much greater public health

impact. In this study, we have carried out reproductive ratio calculations rather than generating medium- to
long-term projections of the infectious disease dynamics. Dynamic models with social contact structures

derived from the UK Time Use Survey 2014-2015 have been used to project the impact of NPIs (van Leeuwen

et al., 2022) and are a natural candidate for augmentation with a wellbeing model based on the TUS data. Our

calculations focused heavily on the distinction between within- and between-household transmission and

could be extended into a fully dynamic household-strati�ed transmission model based on previous stochastic
and deterministic models of infection at the household level (House and Keeling, 2009; Hilton et al., 2022;

Ross et al., 2010).

Future iterations of our model could offer improvements in realism by incorporating a more explicit social

network structure; one of the reasons for the vast difference in person-hours of exposure at the household-

and-workplace level is that we modelled households as a small �nite unit of population, whereas all
individuals recorded as being ‘at work’ during a given time slot in the TUS were assumed to have some degree

of exposure to one another. In practice, workplaces are highly segregated, with individuals at work typically

being exposed mainly to individuals who share their workplace (although individuals in retail or service jobs

are an important exception to this principle). A potential solution to this would be to re�ne the model by

incorporating statistics on the size of workplaces so that an upper limit could be placed on person-hours of
exposure in the workplace. Alternative aggregation of locations into more categories could also be made to

re�ect different patterns of mixing and behaviour. For example, one might expect that workplace contacts

would be more intense than those in other ‘external’ locations. However, this would involve adding an extra

parameter to the model to distinguish between the per-unit-time transmission rates for work and non-work

locations. In this study, we have retained a two-parameter formulation that in a real-world setting would
allow the model to be parameterised from population-level incidence data and within-household

epidemiological studies, both of which were available during the COVID-19 pandemic. Similarly, the ‘leisure’

location in our model represents an aggregate of many non-overlapping contact sites. Social contacts in the

workplace also tend to be repetitive, with individuals seeing the same set of people at work every day. In a

dynamic model, this means that as immunity builds up in a workplace through repeated infection, the
workplace will become a less risky site of social contact with respect to infection, and this build-up of local

immunity is not accounted for in our approximation of the workplace as a single fully connected population

unit. The weaknesses stemming from our unrealistic assumptions around workplace and leisure contacts

could be remedied either by incorporating our wellbeing calculations into a model with an explicit

household-and-workplace structure (Pellis et al., 2011) or through the use of a network model (Keeling and
Eames, 2005). Network models have been applied both in the study of COVID-19 pandemic-era NPIs (Chang

et al., 2021; Karaivanov, 2020) and in the context of wellbeing modelling to study the spread of mood within

social cliques (Eyre et al., 2017).

Prior to the outbreak of the COVID-19 pandemic, research had suggested that quarantine is linked to adverse
psychological outcomes (Brooks et al., 2020). Since the outbreak of the COVID-19 pandemic, numerous

studies have been conducted to scrutinise the patterns in mental health before, during and after the

introduction of lockdown measures. Longitudinal analyses of UK household data revealed signi�cant

increases in psychological distress, particularly among young individuals and women, after one month of

lockdown, exacerbating pre-existing disparities in mental health (Banks and Xu, 2020; Chandola et al., 2022;
Niedzwiedz et al., 2021). Studies found that risk factors for worse mental health included being female,

having a lower income and having pre-existing mental health conditions. Among females, there was found to
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be much more variation in mental health compared to males, who experienced a relatively stable trajectory

between April and November 2020 (Stroud and Gutman, 2021). Additionally, studies suggested that despite

initial ‘shock’ factors leading to signi�cant increases in mental disorders, anxiety and depression, levels of
both declined in the �rst 20 weeks following the introduction of lockdown measures in England (Fancourt et
al., 2020). Studies conducted to speci�cally look at the mental health of UK university students found that

during the COVID-19 pandemic there was a signi�cantly elevated prevalence of depressive symptoms (Evans

et al., 2021; Owens et al., 2022). Owens et al. in particular found that this heightened prevalence (55 per cent

of students), linked to lack of sleep, did not decrease signi�cantly over time (52 per cent of students). These
�ndings could inform future efforts to construct a more sophisticated model of population wellbeing,

incorporating the evolution of various wellbeing metrics during an intervention and acknowledging the

demographic heterogeneity highlighted by the body of research.
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The model was informed by data from the UK Time Use Survey (TUS) 2014-15 (Gershuny and Sullivan, 2017).
Participants in the survey �lled out a diary in which they recorded their location and current activity at 10-

minute intervals over the course of one weekday and one weekend day, along with a record of who they were

currently with, and the level of enjoyment associated with each interval scored on a scale of 1 to 7. The diary

was linked to demographic information on the participant, in particular their age. Each 10-minute interval

was encoded with one of 38 different location values, which are shown in Appendix C.

Individuals were put into 20 age groups, each one a �ve-year interval going from 0–4 years old up to 95–99

years old. The survey only recorded diary entries for individuals who were 8 years or older, however; children

aged 7 and under were included in the data on household composition. In order to still incorporate contacts

involving children aged 8 or under, the assumption was made that the behaviour of children aged 0–7 could
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be approximated by those aged 8–9. This will not be wholly realistic, particularly for children who are not yet

school age, but any discrepancies are unlikely to be signi�cant.

We construct our pre-NPI contact matrices from time-use survey data using the method introduced by
Zagheni et al. (2008). For each location option in the TUS, we calculated a contact matrix 𝐾l where �𝐾𝑙 � 𝑎𝑏
was the approximate number of contacts a person in age group 𝑏 has with people in age group 𝑎 at the

location 𝑙 in a day.

We take into account day-of-the-week effects by constructing separate contact matrices for each location

based on contacts recorded on weekdays and on weekends, and then taking the weighted average of the two.

Hence, the contact matrix for location 𝑙, 𝐾l, is calculated by the weighted sum of the two:

Equation 1.

This weighted sum is suppressed in the de�nitions of the various location contact matrices for ease of

exposition.

We use 𝑇 = �𝑡1,…, 𝑡144 �  to denote the set of 10-minute time intervals used in the TUS, so that 𝑡1 = �0,10�
corresponds to the 10 minutes starting at 12:00 a.m. and ending at 12:10 a.m. We use 𝑃𝑡 � 𝑙, 𝑎 �  to denote the

estimated probability that under the conditions of the TUS (i.e. in the absence of NPIs) during a time interval
𝑡 ∈ 𝑇 a given individual experiences a contact event of 10 minutes of exposure to a single individual of age

class 𝑎 in a given location, 𝑙.

Our model of the transmission process distinguishes between transmission within a household, between

visitors and residents of a household, and at external non-household locations. In order to simplify notation,

the locations coded in the TUS data as ‘Other people’s home’ and ‘Home’ will be denoted 𝑂𝐻 and 𝐻𝐻
respectively.

Appendix B – Contact matrices constructions

Household contact matrices

Using the household composition data from the TUS, we construct a matrix 𝐻 where each entry (𝐻 ) 𝑎𝑏 is the

estimated expected number of people in age group 𝑏 in a household that has at least one individual in age

group 𝑎,

Equation 2.

where 𝑛𝑎 is the number of people in age group 𝑎 in a given household. In the case where 𝑎 = 𝑏, 1 is subtracted

to avoid counting contacts with yourself. Using this matrix, we can construct a contact matrix for mixing

within the household:
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Equation 3.

Each term in the summation gives the expected number of contacts with age class 𝑎 members of their own

household experienced by an individual of age class 𝑏 during a single 10-minute interval, so that �𝐾HH � 𝑎𝑏
gives the expected number of contacts of this type over an entire day.

Other home–visitor contact matrices

We consider visits to other households as a distinct category of mixing on the basis that these contacts are
likely to be with close friends and family members, meaning that they will differ from work/leisure contacts

in terms of physical proximity and frequency of touch. This is re�ected in the package of NPIs implemented

in the UK during the height of the COVID-19 pandemic, which placed separate restrictions on household

visits and work/leisure activities.

We calculate the expected number of ‘Other people’s home’-coded contacts with individuals of age class 𝑎
experienced by an individual of age class 𝑏 a follows:

Equation 4.

Here 𝐸𝑛𝑎 is the average number of individuals of age class 𝑎 per household. Each term in the summation

encodes the probability that an individual of age class 𝑏 spends time interval 7 in a household other than

their own, multiplied by the expected number of individuals of age class 𝑎 belonging to that household who

are at home during that time interval. While this captures the exposure experienced by individuals visiting a
household to members of that household, our model will not capture the effect of cross-contact between

separate visitors to a household. Given the relatively small amount of time individuals spend visiting other

households in the TUS, the effect of ignoring these cross-contacts is likely to be minor. In particular, cross-

contact between members of the same household visiting a second household is very unlikely to make a

substantial contribution to population-level infection since infections between members of a shared
household are overwhelmingly likely to take place within their own household given the long time periods

spent there.

External contact matrices

We de�ne external contacts to be all contacts made in settings other than ‘Home’ or ‘Other people’s home’.

We will denote the full set of external locations by 𝐿. The expected number of contacts with individuals of
age class 𝑎 made by an individual of age class 𝑏 in location 𝑙 ∈  during a single day is given by:

Equation 5.
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where 𝑁𝑎 is the total number of people in age group 𝑎 in the whole population. This de�nes a location 𝑙-
speci�c contact matrix 𝐾𝑙, and summing these over all the external locations in the TUS data gives the

external contact matrix we use in our analysis:

Equation 6.

Appendix C – Location codes table
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Location Label Pathway Restrictions Time spent (%)

Unspeci�ed location ext 0.5753%

Unspeci�ed location (not travelling) ext 0.8544%

Home HH 69.0225%

Second home or weekend house HH 0.1956%

Working place or school ext Work Closure 10.5454%

Other people’s home OH Restrictions on home visits 3.2442%

Restaurant cafe or pub ext Leisure Closure 1.1801%

Sports facility ext Leisure Closure 0.6378%

Arts or cultural centre ext Leisure Closure 0.0618%

Parks/countryside/coast ext Leisure Closure 0.4751%

Shopping centres markets other shops ext Leisure Closure 1.3722%

Hotel guesthouse camping site ext Leisure Closure 0.9423%

Other speci�ed location (not travelling) ext 2.1841%

Unspeci�ed private transport mode ext 0.0406%

Travelling on foot ext 1.6769%

Travelling by bicycle ext 0.1160%

Travelling by moped/motorcycle ext 0.0199%

Travelling by car as the driver ext 1.8169%

Travelling by car as a passenger ext 0.4595%

Travelling by car – unspeci�ed ext 1.0611%

Travelling by lorry or tractor ext 0.1252%

Travelling by van ext 0.2251%

Other speci�ed private travelling mode ext 0.0259%

Unspeci�ed public transport mode ext 0.0030%

Travelling by taxi ext 0.1087%

Travelling by bus ext 0.3901%

Travelling by tram or underground ext 0.0760%

Travelling by train ext 0.2260%

T lli b l 0 0423%
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Travelling by aeroplane ext 0.0423%

Travelling by boat or ship ext 0.1096%

Travelling by coach ext 0.0272%

Waiting for public transport ext 0.0492%

Other speci�ed public transport mode ext 0.0199%

Unspeci�ed transport mode ext 0.7103%

Illegible location or transport mode N/A 0.0014%

No answer/refused N/A 1.3782%

Interview not achieved N/A 0.0%

Table 2: A compilation of potential location values in a speci�ed TUS entry, accompanied by the associated
infection pathway, related restrictions in�uencing social interactions within the location, and the percentage of
time allocated (considering day-of-the-week scaling).

Appendix D – Implementation of NPIs

In our model, NPIs act to reduce the probability that an individual is in a speci�c location or group of

locations in a given time interval and increase the probability that they are at home in that time interval by a

corresponding amount; since the total amount of time in a day is constant, any reduction in time spent in an

external location must be balanced by an increase in time spent at home. We encode a speci�c NPI as a set of
age-strati�ed vectors 𝑎𝑙 � 𝑡 � = �𝑎𝑙

1 � 𝑡 � ,…, 𝑎𝑙
20 � 𝑡 � �  where 𝑎𝑙

𝑎 � 𝑡 � ∈ �0,1�  is the probability that an individual of

age class 𝑎 is in location 𝑙 during time interval 𝑡 relative to the equivalent probability in the absence of NPIs.

The relative reduction in probability is thus given by 1 - 𝑎𝑖
𝑎 � 𝑡 � . In this study, we will not consider measures

such as curfews which only affect mixing during certain times of day, so that 𝑎𝑙 � 𝑡 �  does not change with 𝑡
and we can thus suppress the time dependence and write 𝑎𝑙. We will denote the set of locations affected by
the NPI as 𝐿𝑙>.

Under the NPI speci�ed by �𝑎𝑙: 𝑙 ∈ 𝐿' �, the resulting within-household contact intensities are given by

Equation

7.

which cannot be easily expressed in matrix terms. For the home-visit contact matrix, the new contact

intensities will be given by:

Equation 8.

which also cannot be easily expressed in matrix terms. The resulting matrices for an external location, 𝑙 ∈ 𝐿',
effected by the NPI, is given by
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Equation 9.

namely, 𝐾𝑙
' = 𝑎𝑙

𝑇𝐾𝑙𝑎𝑙. The external contact matrix 𝐾ext resulting from the NPI is then given by replacing the

matrices encoding locations affected by the NPI with their adjusted versions in Equation 6:

Equation 10.

Appendix E – Reproductive ratio calculations

In this study we quantify the effectiveness of NPIs by estimating the effective reproductive ratio, 𝑅𝑒, of the

infection under a speci�ed package of NPIs. This is de�ned as the expected number of secondary cases
generated by a single case under conditions of low background immunity; our analysis is thus focused on the

effectiveness of NPIs in terms of their ability to prevent a new pathogen from establishing itself in the

population, rather than in terms of real-time application during an evolving epidemic. We distinguish the

effective reproductive ratio under a package of NPIs from the basic reproductive ratio, 𝑅0, which is de�ned to

be the reproductive ratio in the absence of NPIs. In what follows, we outline the calculation of the basic
reproductive ratio using estimates of contact intensities derived from TUS data; the same set of formulae

de�ne the effective reproductive ratio under a package of NPIs when the underlying contact behaviours are

replaced by projected contact behaviours under those NPIs.

Our model distinguishes three transmission pathways: within-household transmission (HH), de�ned as

transmission occurring with a household between two individuals who live in that household; other
household transmission (OH), de�ned as transmission occurring with a household between one individual

who lives in that household and one who does not; and external transmission (ext), de�ned as transmission

at any location other than within the home. Each transmission route has an associated basic reproductive

ratio, de�ned to be the expected number of secondary infections generated along that route by a single case

over the course of their infectious period in the absence of immunity, denoted 𝑅0
HH within-household

transmission, 𝑅0
OH for other household transmission, and 𝑅0

ext for external transmission. The basic

reproductive ratio is given by summing these route-speci�c reproductive ratios:

Equation 11.

The within-household basic reproductive ratio is de�ned in terms of the susceptible-infectious transmission
probability, the probability that a susceptible individual is infected by a single infectious individual within

their own household, which we will denote 𝑝HH. If an infectious individual transmits to each susceptible
individual within their household at rate 𝜎HH whenever both individuals are in the household, then infection

events can be modelled as a Poisson process  with intensity 𝜎HH. The expected duration of this process is

given by the expected time per day which both individuals are at home, 𝑇HH, multiplied by the expected

duration of infection, 1
𝛾
. The mean of the Poisson process is thus given by
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Equation 12.

The susceptible individual is infected the �rst time an event occurs in the Poisson process, so that the

probability that they are not infected during the infectious individual’s infectious period is given by

Prob (𝑋 = 0 ) , where 𝑋 ∼ Poisson (𝜆 ) . The SITP is thus given by

Equation 13.

In practice, the SITP can be estimated empirically from longitudinal studies of infection (House et al., 2022),

while the pairwise transmission rate 𝜎HH cannot be measured directly. Given an estimated infectious period

and an average contact duration 𝑇HH estimated from the TUS, we can rearrange Equation 13 to get

Equation 14.

If we assume that infection between residents and visitors to the household happens at the same pairwise

transmission rate as infection between members of a shared household, then we can use Equation 14 to
estimate an SITP for the other home route of transmission. Denoting this SITP by 𝑝vis, we have

Equation 15.

where 𝑇OH is the expected time per day spent in other households measured by the TUS.

The basic reproductive ratio associated with within-household transmission is given by multiplying the SITP

by the expected number of susceptible individuals which the �rst case in a household will be exposed to

during their infectious period. This is precisely the mean household size, 𝑁𝐻, minus one (since the infectious
individual cannot transmit to themself). Thus

Equation 16.

and analogously

Equation 17.

The basic reproductive ratio for external transmission is given by
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Equation 18.

where 𝜎ext is the transmission rate across external social contacts and 𝑇ext is the average duration of exposure

across all external settings in a single day.

In a real-world outbreak setting, we generally have population-level estimates of 𝑅0 which are not subdivided
by transmission pathway. Given estimates of the SITP, 𝑝HH, and the distribution of household sizes, we can

estimate the within-household and other household reproductive ratios using Equations 16 and 17

respectively. Given an estimate of the population-level basic reproductive ratio 𝑅0 we can then estimate 𝑅0
ext

using equation 10. With this in mind, in our study we modelled the impact of NPIs under a range of values of

𝑅0 and 𝑝 to explore the impact of differences in overall transmissibility and the relative contributions of
infection within the household and elsewhere.

The impact of NPIs is to adjust the average exposure times while keeping transmission rates �xed, as

outlined in the section titled ‘Implementation of NPIs’. In the absence of NPIs, we use values estimated from

the TUS data: given an estimate of the person-time exposure matrix 𝐾𝑖 for transmission pathway

𝑖 ∈ {HH,OH, ext } , the average daily exposure time 𝑇𝑖 associated with this pathway is given by the leading
eigenvalue of 𝐾𝑖. The transmission rates across contacts can be estimated from estimates of 𝑅0 and 𝑝 by

rearranging Equations 16 and 18 as follows:

Equation 19.

and

Equation 20.

Under an NPI which replaces the exposure times 𝑇HH, 𝑇OH, and 𝑇ext with 𝑇HH
' , 𝑇OH

' , and 𝑇ext
'  respectively, the

effective reproductive ratio is given by:

Equation 21.

where

Equation 22.
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Equation 23.

and

Equation 24.

Appendix F – Enjoyment measure

The TUS data includes estimates of mean enjoyment levels associated with each location category; each

survey participant recorded a subjective level of enjoyment on a scale of 1 to 7 during each time interval of

the survey day, and the mean enjoyment level for a location is calculated by taking the mean of the recorded
enjoyment level over all time intervals associated with that location over all survey participants. These

location-speci�c mean enjoyment levels are strati�ed by age, so that for each location 𝑙 ∈ 𝐿 we can de�ne an

age-strati�ed enjoyment vector 𝑒𝑙. The true impact of NPIs on wellbeing is likely to be dif�cult to quantify, so

to cover a range of possibilities, we model a simple best-case scenario and a simple worst-case scenario, with

more complex real-world responses lying somewhere between the two:

Best-Case Scenario: any extra time spent at home is assigned the mean enjoyment level associated with

time at home based on the results of the TUS;

Worst-Case Scenario: any extra time spent at home is assigned the lowest possible enjoyment level, i.e.

1.

All the NPIs we consider in our modelling work by keeping individuals at home when they would otherwise
be in some other location, and so we only need to consider changes in subjective enjoyment resulting from

increased time at home balanced by decreased time elsewhere.

Denote by 𝑃 the total number of people-minutes recorded by the TUS – 144 times twice the total number of

survey participants – and for each location denote the total number of people-minutes spent by people in age

group 𝑎 in location 𝑙 in the absence of NPIs as 𝑃𝑎
𝑙 . We de�ne population-level enjoyment to be the sum over

all locations and age groups of the total number of person-minutes spent by members of that age group in

that location multiplied by the mean enjoyment associated with that age group and location, divided by the

total number of people-minutes

Equation 25.

If the effect of an NPI is to replace the person-minute pro�le 𝑃𝑎
𝑙  with 𝑎𝑎

𝑙 𝑃𝑎
𝑙 , for non-home locations then

under the best-case scenario, the total population-level enjoyment is given by
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Equation 26.

The worst-case scenario is calculated as

Equation 27.

Appendix G – Enjoyment histograms by location

Figure 4: Histograms for the enjoyment levels reported in the TUS at a) home, b) work/school, c) other people’s
homes, d) leisure locations.
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Glossary

Basic reproductive ratio: Expected number of infections generated by a single infection in a population with

no pre-existing immunity and in the absence of control measures.

Contact matrix: A matrix in which the entries quantify the intensity of social contacts relevant to infectious
disease transmission between different groups in a population strati�ed into age or risk classes.

Dynamic model: A mathematical tool used to analyse the evolution of a physical, biological or social process

over time.

Effective reproductive ratio: Expected number of infections generated by a single infection in a population

during an evolving outbreak of infection, potentially in a partially immune population and with control
measures implemented.

Eigenvalue: The scalar multiplier associated with a given eigenvector of an operator.

Lateral �ow test: Common testing method which detects antigens that are present when a person has

COVID-19.
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Matrix: (pl. matrices) A table-like mathematical structure which encodes a speci�c geometrical

transformation in multidimensional space.

Non-pharmaceutical intervention (NPI): Any public health measure that does not primarily use medication,
e.g. lockdown.

Pandemic: An outbreak of a disease that effects an entire country, several countries or the whole world at one

time.

Poisson Process: A stochastic process in which events occur at a constant rate and independently of one

another

Time-use survey: A survey designed to quantitatively study human behaviour by asking participants to

record their social activities at different times of day.
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